
Using Neural Parallel Language in Distributed Game World Composing

Xizhi Li
The CKC honors School of

Zhejiang University, P.R. China
LiXizhi@zju.edu.cn

Abstract

Bringing networked virtual game worlds and game
world logic to the open Internet will spawn new types of
computer games. It usually deals with thousands of
interactive entities among its web servers. Game engine
practitioners have used scripting technology to add soft
computing capabilities to a variety of their engine
modules. This article proposes a unified approach of
using Neural Parallel Language (NPL) in a computer
game’s scripting engine. We have implemented a reduced
version of NPL and our own 3D game engine in a pair.
We will show the effectiveness of such a programming
language methodology by means of our released game
demo. As the web is becoming more and more
computable (the semantic web) and intelligent (agent
technology), neural network based programming
paradigm as described in this article is likely to become
the solution to general purpose distributed software
applications.

1. Introduction

Modern computer game engine has evolved to become
a complete suite of virtual world constructing tools and
runtime environment. The latter is usually a tightly
integrated framework of 3D rendering engine, scripting
engine, physics simulation and networking. The balance
of efficiency and flexibility is the primary issue that is
weighed constantly in these many different places in an
engine designer’s mind. It is usually such compromises
drawn by the designer that determined the characteristics
of the engine and hence the type of games that could be
composed by it. Scripting is the symbol of flexibility and
has become ubiquitous in modern computer game engines.
Scripting alone means two things: (1) script files are
automatically distributed and logics written in a script can
be easily modified; (2) script code may be generated by
dedicated visual language and software tools. In a
computer game, almost all kinds of static data and most
dynamic logic have text-based presentations outside the

hard core of its engine. The adoption of scripting
technology makes level design or game world logic
composing easier than ever.

Data exchange on the Internet is also largely text-
based. An entity on the Internet with or without
computing capabilities automatically becomes a global
resource and can be referenced by other resources. A
great deal of web technologies and recommended
standards have been recently proposed to make the web
more and more meaningful, interactive and intelligent. As
envisaged by web3d [6], web service and ubiquitous
computing research, etc, software applications in the
future are highly distributed and cooperative. Computer
games and other virtual reality applications are likely to
become the most pervasive forces in pushing these web
technologies into commercial uses. It is likely that one
day the entire Internet would be inside one huge game
world. However, two related issues must be resolved first,
which are distributed computing and visualization.

While some current effort on Semantic Web/Grid tells
a computer program exactly what to compute and
visualize on the Internet, there still lacks formal
approaches on telling it how to compute or visualize.
Web3D technology such as X3D language is exploiting a
new possibility of expressing networked virtual
environment that is as distributed as web pages and more
interactive than just hyperlinks. X3D code generally
describes a tree hierarchy of nodes with routes or stimuli
specified for their input fields. Nodes can be associated
with script files or other Internet assets. Script files
contain logics and hence logics can be distributed on the
Internet (the latter needs special runtime environment
support where scripts are situated). Although most X3D
applications involve only a static assembly of dynamic
scene data[5] from one or several file servers on the
Internet, the existence of scripts and dedicated runtime
environment on both client and server makes it possible
to construct active virtual environment spanning the
network. However, X3D alone is not sufficient or in some
cases suitable to handle all distributed computing and
visualization tasks required in a computer game.

Bringing networked virtual game worlds[1][4] and

game world logic to the open Internet will spawn new
types of computer games[13,14,15,16]. This article
introduces a game engine framework called ParaEngine
for developing games based on distributed game world
data and logic. The enabling technique lies in the role of
its scripting engine which is called Neural Parallel
Language or NPL. NPL makes it possible to compose
game world logic (which might physically exist on
arbitrary places on the Internet) in a network transparent
manner; X3D plays a descriptive role in dynamic scene
rendering and association of interactive scene objects
with NPL neuron file. Unlike general purpose X3D or
VRML visualizer, X3D file is not directly executed but
serves as mental imagery and multimedia elicitations of a
distributed Neural Network functioning on the Internet.
This framework makes it possible to compose and run
active and evolving game world and its logics spanning a
network. The implementation is illustrated in an Internet
RPG game demo called Parallel World. In the following
sections, we will first present the general framework of
ParaEngine and a demonstration of constructing a
distributed game world with it, then we will cover NPL
programming paradigm in further details.

2. ParaEngine framework

A complete description of the game engine is not in
the scope of this article. This section will focus mainly on
the following relevant aspects: (1) how the major
modules of the game engine (graphics rendering, I/O,
scripting, physics, AI, networking) relate to each other, (2)
how computational tasks (path-finding, collision
detection and response, intelligent creature strategies,
game world logics or stories, etc) required by the game
engine are allocated to one of the three possible
programming choices namely script, extended binary
code, and Engine core code, (3) how multiple instances of
the game engine function on the Internet to exhibit one
huge game world.

2.1. Game World Logic division

One of the major tasks of a computer game engine is
to offer language and tools for describing Game World
Logic in an engine digestible format. Usually the logic of
the entire game world can be further partitioned into three
subcategories of programming: (1) script programming: it
is most flexible and can be distributed in many files. Our
objective in designing ParaEngine is to let Scripting do as
much as possible. (2) C++ programming: it extends basic
functionalities already provided in the engine core, such
as some computational intensive AI strategies. (3) Engine
programming: It is fixed with the release of a game
engine. Common functions such as physics and path-

finding routines are in this category.

2.2. Timing and networking

In ParaEngine, several global timers are used to

synchronize engine modules that need to be timed. Figure
1 shows a circuitry of such modules running under
normal state. The darker the color of the module is, the
higher the frequency of its evaluation.

Figure 1. Timing and I/O in ParaEngine

In conventional Internet RPG (Role Playing Game)
games, each game-world object like a Non-Player
Character (NPC), Player-controlled Character (PC), boxes,
doors, weapons, or even terrains is associated with an
abstract neuron. The timer (story-line), network command
or the human players may stimulate some of its input
fields. The stimuli actually come from the game’s physics,
network or GUI engine. During each simulation cycle on
a local game engine, it executes any activated neurons (a
script code associated with a certain game object), which
usually read their stimuli, compute according to its
current state, generate new stimuli to other neurons and
sometimes even take actions (also a script code). On the
whole, the driving force of a game engine is the constant
firing of stimuli in a neural network constructed by scripts.

Game-engine practitioners have used scripting
technology to add soft computing capabilities to a variety
of their engine modules; so that commercially released
games will still enjoy a certain degree of online-
reconfiguration. Unfortunately, there has been no unified
approach of doing it. Instead, most game engines
explicitly implement a network module [11] which
usually relies on Clients/Server (CS) architecture and a
single session. A central database is used to hold all the
status of its game entities and all events and triggers in
the virtual game world reside only on the local computer.
ParaEngine overcomes these limitations and provides
further flexibilities by means of using NPL in
constructing game world logics.

2.2.1. The absence of network modules and NPL. In
ParaEngine (Figure 1), no explicit network modules can
be found. Instead, networking is implicitly specified in
scripts. As argued previously, scripts are flexible entities
that are distributed over the network; and with proper
runtime support at the place where they are situated,
complex network logics can be described. Explicitly
modeling network logic in distributed script files are not a
new idea [8, 9]. For example, there are several standards
such as DIS or Distributed Interactive Simulation in X3D
language [6], as well as some ad hoc approaches in a few
computer game engines [10]. In the ParaEngine
framework, we go one step further. Not a single line of
networking code needs to appear in any script file, yet
network logics can be described in a run-time transparent
manner. To get a quick idea of how this can be done, we
can image two script files A and B which represent two
neurons with a message channel from A to B. If A and B
has been deployed in a single runtime (i.e. one computer),
then whenever A is activated it will route a message
directly to the input field of B and no network
communication occurs. Now if A and B have been
deployed in two different runtimes (i.e. two networked
computers), the physical location of A and B
automatically tells their runtimes that network
communication is needed to route the message. Therefore,
the code of script file A and B stays the same for both
situations. To make this possible, each neuron file is
turned into a hierarchically named network resource
which the language runtimes maintain automatically.

Figure 2. NPL: the big picture

In Figure 2, NPL language runtime is embedded in
each local game engine and manages communication
between neuron files. The big picture is given below.
When writing or debugging a neuron-file network,
programmers do not need to concern about the actual
physical environments where these files will be
eventually deployed (e.g. a huge distributed virtual game
world might exist over 1000 servers on the Internet and
would be ever expanding). Instead, tasks concerning the

actual hardware, communication protocol, certification
and ontology (such as for exchanging meaningful
information) will be specified not in program code, but in
the visual Compiler And Runtime Environment (CARE)
of the NPL language. For example, it is the task of CARE
to distribute/deploy an integral neuron-file network
written in NPL to separate locations (runtimes) of the
physical network. In theory, the only atomic structure that
is unbreakable by CARE is a single Neuron file. Details
of NPL will be given in Section 3 after the introduction of
the game engine framework.

2.3. Composing distributed game world

This section shows the basic steps of composing
distributed game world using the proposed game engine
framework and Neural Parallel Language. There are many
ways by which a game world can be composed. A game
world consists of graphical models, animation models,
terrains, AI creatures, plots and sequences, etc. It is
difficult to have all of them fit into one world editor, not
to mention the various ways that the same thing can be
created. Table 1 shows a few of them as implemented in
our ParaEngine.

Table 1. Game world composing tools
Genre Tools and methods Product digestible

by the engine
graphical
models

3dsMax + exporter X file, MDX file, *.tga,
*.bmp

animation
models

3dsMax + exporter |
MDX + exporter

X file, MDX file.

Terrain and
scene

3dsMax VRML(*.wrl)
 Script converter

*.npl (NPL script file),
*.wrl (VRML)

AI
creatures

C++ code | NPL scripts CAIModuleBase
derivatives, *.npl

Sequences
(Movie)

Visual script maker |
Hand-written script

*.npl (script file)

Plots Hand-written script |
Special visual editor |
In-game editing

*.npl (NPL script files to
be deployed to the web
or just the local runtime)

Let us suppose art elements have been made by the
artists, regardless of what ever tools (3Dsmax, Photoshop,
etc) may be used. This can be tremendous work.
Fortunately, these file-based assets can be easily shared
on the Internet, which the original VRML standard
already achieved. What we will focus here is to compose
distributed game world out of them, writing game stories
and designing logics of the game.

The novelty of the proposed game engine framework
lies in that: the entire game world is viewed as existing
inside a huge brain spanning the Internet. Visual
presentation such as a game scene or movie is but mental
imagery or multimedia elicitations of the distributed
Neural Network functioning on the Internet. By contraries,
in conventional game world composing techniques, the
virtual world is modeled in a (possibly networked) 3D

space with scripts (some logic) attached to interactive
scene objects. Figure 3, shows the differences. Both
models need to map world objects to neuron script files,
but the difference is that when in execution which one
comes first: the static 3D space or active neural network.
In our vision, future software would be designed under
the premise that all front end software run in a distributed
environment and (co)operate in a manner similar to neural
networks. The high level programming paradigm
proposed by NPL matches this scheme. And we believe it
is more flexible and natural to let the active neural
network elicit any visual scene presentations, rather than
vice versa (see Figure 3).

Figure 3. Execution model comparison

2.3.1. An analogy to Imagery. In order to better
illustrate the relationships between the game engine,
world logics, and the Neural Networks; I will draw an
analogy of the programming paradigm of NPL to a theory
(hypothesis) of the human brain concerning Imagery [2]
on cognitive science. In my own version of this theory, it
states that human imagination and visual/auditory
perceptions are in essence the same thing in our conscious
mind, and that they are both the input and output of the
unconscious mind which does the work of recognition,
memorization and deduction. The cycle of imagination
and the subconscious forms mostly a closed loop when
we are asleep, and a biased loop (by what we perceive)
when we are awake. See Figure 4.

Metaphorically speaking, the Imagination can be
thought of as a multimedia, virtual reality “theatre” [7],
where stories about the body and the self are played out.
These stories
• are influenced by the present situation according to
perception,
• elicit the subconscious activities accordingly,
• and thereby influence the decisions taken by action.

Figure 4. The Imagery-subconscious loop

In the engine framework, NPL is used to simulate the
human brain. However, the imagination represented by
the state of a Neural Network can not be visualized by
itself. Instead the responsible neurons must tell the Game
Engine game-related information upon activation
whenever an internal state has been reached. This is done
through a set of game specific API called Host API or by
feeding to the engine an X3D (VRML) file which defines
the visual elicitations. (We use a dual programming
language model [12] in NPL. In this model, there are two
distinct language systems: one is host language, the other
is extension language. These two language systems could
communicate at runtime through user-defined Host API.)
The game engine will then present the Imagination in
cutting-edge multimedia forms to the user. The user might
interact with these objects. The game engine then
translates such interactions (sensory inputs) to valid
neuron stimuli. And the whole system will be functioning
as seen in Figure 5 with text, buttons, graphics and
sounds.

Figure 5. Screen shots from Parallel World game

Everything in the figure is mental elicitation of a
neural network constructed by NPL. The neural network
may be deployed on as many computers as the number of

neurons used in composing the game world itself. In our
game demo, players might walk around, talk with NPCs,
complete complex tasks all in an continuous infinitely-
large distributed game world. It is like browsing 3D web
pages [6] on the Internet, however, it is more interactive,
purposeful and fun.

2.3.2. A streamline of composing game world. We will
show the basic steps of composing a game world with our
current available tools.
Step1: Preparing game assets. These include mesh
models, biped animation sequences, sounds and textures.
Or one can collect URI of such models if they are Internet
resources. Instead of using URI or file path name for their
instantiation or elicitation later in scripts or VRML file,
they are given shorter names. This is done by a short
script. A sample code is given below:

function wrl_movie1_res()
-- X file terrain 200*200
ParaCreateAsset("MS", "terrain200",
"xmodels\\terrainPH.x");
--anim:[0]stand,[1]stand hit,[2]death,[3]Birth,[4]Spell
--radius:1.346700 meters
ParaCreateAsset("MA", "tree0",
"Doodads\\Terrain\\AshenTree\\AshenTree3.mdx");

end
A GUI tool has been created for exporting groups of

resource files into such script code. The above script is
actually generated by this tool. Functions started with
“Para” are Host APIs. Therefore, by referring to this
script, all runtimes on the network know where to find
these named resources.
Step2: Building 3D scenes. 3D Scenes are built using
3dsMax and exported as a VRML file. These scenes (files)
are visual entities that might be called by the neural
network as visual elicitations. They will cause the game
engine to present its imagery to the computer screen; in
the meantime, the engine simulates the imagery which
might cause new stimuli to be generated to the neural
network. Hence this forms the imagery-subconscious loop
previously mentioned in Figure 4. In our current
implementation, VRML file needs to be further compiled
to a more compact script format by a cross-compiler tool.
Step3: Constructing Neural Networks using NPL. This is
the most important and high-level part of distributed
game world composing. In our framework, neural
network defines the behavior of the game world and its
logics. For example, one can create NPL neuron-file
network that functions as message broad-casting portals,
reactive agent (like RPC or remote procedure call),
memory block, a sequence of cinematic, complex logic
circuits with feedbacks, or a router or switcher, etc.
Details of NPL will be presented in section 3. Figure 6
shows a most simple demo: building a movie clip or
cinematic with a NPL neural network.

Figure 6. NPL demo: a simple cinematic

This network contains only two neuron files:
Movie.npl and Movie2.npl. The small block inside the
file box denotes a kind of input activation conditions.
Each activation condition is symbolically named as
SceneX. The sync input field is one method of
synchronizing the beat (activation) of the two neuron files.
The execution of the cinematic is rather like real movie
shooting. Each SceneX will either elicit a complete visual
imagery (by referring to an X3D file or visual scripts) or
call Host API functions (of the game engine) to reset the
camera or assign tasks to scene objects. Figure 5 (the
second and third picture) shows the execution effect of
such a neuron-file network.
Step4: Deploying neuron files on the physical network.
Neural network deployment shows one benefit of using
neural network based programming paradigm in
distributed application development such as composing
game world logic on the Internet. Neuron files can be
arbitrarily distributed on the physical network. For
example, in Step3, the two movie files can be deployed in
one or two computers. When composing a game world,
designers can usually divide its logic into two general
categories: client side and server side. Client side neuron
files will be shipped with the game; while server side will
be distributed to many host servers. An alternative might
be regarding each computer (peer) as both client and
server. Information unspecified in the neuron source code
(such as the topology of neuron files) is dealt with by
CARE of the NPL language.

3. NPL: Neural Parallel Language

In previous sections, we have shown the role of NPL
in ParaEngine. This section will describe NPL as a
standalone neural network based programming paradigm.

3.1. Introduction to NPL

In our viewpoint, the compiling of code (that targets

distributed environment) may also be carried out in a

distributed manner (from command-line compiler to rich
HCI enabled ones with network capabilities); the next
generation high-level language may be able to express
adaptive and distributed behaviors with its own language
primitives; its compiler may be able to generate low-level
code that runs on any part of the network; and its
development environment may allow visualized design of
any parallel-code and deployment-scheme. In other words,
the coding and compiling process may both be carried out
in a distributed manner and environment. This calls for a
new language dedicated to this task and a new human-
computer interface (HCI) adopted by its compiler and
runtime environment.

With this vision, we proposed a unified approach of a
neural network based programming paradigm called
Neural Parallel Language (NPL). Distributed software
systems generally need to solve two problems: computing
and visualization. NPL is associated with a game engine
which provides a visualization platform for the language
(See section 3.3).

3.2. The NPL methodology

The key idea of NPL is that software system in the

future functions more like one giant brain spanning across
the entire Internet. It could form new neuron connections,
learn from experiences, remember patterns and perform
many other functions resembling the human brain.
Current object-oriented programming language lacks the
directness in composing such kind of software systems,
nor is any existing Neural Network Simulation Language
[3] eligible for constructing commercial distributed
software. NPL tries to solve these problems by means of
(1) keeping all communication, network deployment and
certification details out of the program code, (2)
presenting programmers a very clean neural network
based programming paradigm, (3) preserving all previous
familiar paradigms such as object oriented or functional
programming. By using NPL, software is constructed like
designing a brain network. Section 2.3 shows a
demonstration.

The components of NPL include:
- Neuron file: The source file that programmers used to
code the function of an abstract neuron. NPL does not
distinguish between a single neuron and a network of
neurons. Both can be modeled inside one neuron file. No
explicit instantiation is needed in the code, so long as files
are deployed into a runtime environment. More details
will be given later.
- Runtime environment: It is a management environment
where activation and execution of local neuron files occur
and messages to external neurons are routed via network.
It maps resource names (e.g. of neuron files) to their
physical locations on the network, and automatically

update any topological changes to this mapping.
- Visual compiler: It compiles neuron files into
intermediate code to be executed by the Runtime. It has a
GUI front end to allow a group of neuron files to be
deployed (compiled) to multiple Runtimes on the network.
- Visualization and simulation Engine: It provides a
complete class of multimedia functions (Host API) which
neuron files can be used to read/write to/from a
networked simulation environment. This can be regarded
as a shared space of virtual reality theatre where stories
are evoked or conjured up by a neural network. This
virtual reality space may also generate stimuli back to the
neuron files. We have and will continue call such a
simulation environment a game engine in this paper.

3.3. Computing and visualization in NPL

As a general purpose programming language, NPL

must provide patterns for visual presentations. In object
oriented programming, we have well-known patterns such
as MVC (model, view, controller). In neural-network
based programming paradigm, the relationship between
computing and visualization resembles our cognition
process. Figure 4 shows this analogy.

For years, researchers have suspected that the binding
task (mind and brain) is accomplished by nerve cells in
distinct areas of the brain communicating between
themselves by oscillating in phase (40 hertz) -- like two
different chorus lines kicking to the same beat even
though they're dancing in different theatres. These
oscillations have been detected in everything from the
olfactory bulb of rabbits to the visual cortex of cats and
even conscious humans. IBM, Birmingham and Saint
Mary's researchers believe they have explained not only
how the oscillations come about but also how the
oscillatory rhythm is communicated from one area of the
brain to another. These two findings are critical to
understanding how the complex electric signals of large
numbers of nerve cells generate awareness and perhaps
even consciousness.

These findings also provide us with patterns that are
applicable in NPL. Section 2.3 provides a concrete
example of such computing and visualization pattern. In
the game engine, camera plays the role of attention in the
mind. Attention selects only limited mount of imagery at
any given time, despite there might be millions of other
stories that are being played (simulated) in the mind at the
same time. It is the constant selection of our attention that
constitutes what we perceive as a continuous
consciousness. The same thing happens in a game engine,
the camera only present a portion of the simulated world
to the viewport. Attention replays a previously unseen
imagery in the same sequential order as it was generated a
short time ago, therefore reinforced it into memory; it

signifies the importance of such imagery by bringing it to
our internal perceptions, which in turn, makes it easier to
affect subsequent imagery generation and selection of
attention. So does it in the game engine.

3.4. Message driven model

Many interpreted extension languages are event driven.

However, a 100% event-driven language can not simulate
parallel behaviors, unless it’s been explicitly programmed
as multi-threaded. This is because functions or nested
functions must be fully executed before it can release
control of its execution thread. Another extreme is that
functions can be suspended at any point of execution, at
the cost of maintaining mutual exclusive access of any
shared data structures. For functional and performance
concerns, none of these methods is used by NPL message
driven model. Instead, NPL runtime environment adopts a
hybrid approach (this is not new [3]). It divides time into
small slices. Within each slice, there are two phases (see
Figure 7) called (1) synapse data relay phase, (2) neuron
response phase. In phase 1, stimuli from the environment,
network and/or local neurons activate the synapses of any
connected neuron; and data is passed to the soma, cached,
but not executed. In phase 2, NPL examines the list of
potential reacting neurons, which is generated in phase 1,
and executes it if any of its input field condition tests has
passed. Any single execution should be guaranteed to exit
within the rest of the time slice by the programmer. The
executable code may include (a) further activation test, (b)
generating stimuli to some other neurons wherever they
may be, (c) calling Host API functions provided by the
host application (game engine).

Figure 7. Time slice and phases

With this simple approach, there are three obvious
advantages. (1) The time interval during which the neuron
state is changed is fully predictable (it is always in phase
1). NPL can efficiently handle mutual exclusive data
access to any input field data. (2) External stimuli (from
network) are handled transparently as internal stimuli. (3)
The execution of NPL never stalls the CPU; even it is
running in the same thread as the host application (game
engine). This feature also makes it easy for the neural

network to communicate with the game engine, because
by running in the same thread, it automatically guarantees
mutual exclusive data access to the engine and vice versa.
The current implementation of NPL only supports this
single threaded mode.

In computer game engine (or other discrete time
interactive applications), one annoying problem is that
when dealing with some computation intensive tasks, the
graphic (or other real-time function) jerks. NPL generally
solves this problem, because execution can always be
paused at predictable short interval to free CPU for
graphic rendering or IO polling.

3.5. Neuron file

In NPL, neuron file plays an important role. It is the
building block of neural network. Each neuron file
represents an abstract neuron and can have one activation
function and many helper functions. Files are referenced
by other files through namespace shortcut. File is used to
represent NPL neuron for the following reasons. (1) File
is automatically managed in most operating systems; and
people are familiar with it. (2) The deployment and
configuration of files on the network is easy; and it is
supported by operating system. (3) File is the most
common Internet resources. Ontology can be created for a
domain of neuron files on the network. (4) By using a
single file, NPL gets rid of any artificial tokens and
syntax that may bewilder programmers at first. E.g. a
blank file in NPL is also a valid neuron file and is able to
receive and store (overwrite only) any incoming signals,
but not producing anything. (5) By setting default
variable scope to global (of the file), the states of a
neuron file can be easily managed.

Object oriented programming is allowed in any place
of the neuron file. E.g. the string data type is an internal
object that contains both data and functions and can have
many instantiations in different places. However, each
neuron file is immediately an instance of itself so long as
it has been assigned a path name in a namespace, which is
done by CARE. All other neuron files can begin
referencing this neuron instance by this unique name or
its shortcut. The NPL runtimes maintain a mapping from
such names to their physical addresses during execution.

3.6. NPL network ontology

Neuron, neuron input/output field, neural network can

all be assets on the Internet. RDF is an ideal framework
of expressing such ontology, and neural network could be
made universally available. Discovering and generating
ontology might be a joint job of CARE and the human
user. With an ontology framework, (1) Neuron files could
be referenced by namespace shortcut (i.e. shorter and

invariable names) rather than physical addresses (2) it
allows the runtime environment to quickly update
network topological changes inside a domain of neural
network. (3) it enables two unknown neural networks to
connect to each other so long as they have agreed upon
some IO rules defined in some global files.

Currently we did not implement the ontology approach
for locating neuron files (it is an ongoing work). For
simplicity, the current NPL runtime searches the file
directory for a configuration file of any dummy neuron (a
neuron file that does not exist on the local computer). It
begins from the current directory, then the parent, etc.
This is a distributed approach, but is not very convenient.
For example, files belonging to the same namespace must
be deployed to a file directory with the same short name
as the namespace on all runtimes (computers).

3.7. Ongoing work

This article is a mixed description of the full vision of

the proposed framework and our current (reduced)
implementations. The evaluation of the Internet RPG
game demo has shown good performance of the entire
framework (see Figure 5). There are yet many places to
be improved. (1) Garbage collection in NPL runtime is
one of them. In OO runtime, when the reference count of
an object drops to zero, the object can be safely removed;
while in NPL runtime, it unloads a neuron file by
predicting its probability of being activated in the next
simulation cycle. This has something to do with the
average hamming distance variance of its input stimuli
vector. (2) Visual compiler of NPL is being designed to
provide a better GUI interface for file deployment. (3)
We are also designing a detailed ontological framework
for discovering, referencing and describing unknown
neural networks.

4. Conclusions

Distributed software systems (including the web) need
a unified solution to two related problems: computing and
visualization; our brain is both a distributed computing
environment and a theater of multimedia (internal
perceptions). Hence, the analogy of human cognition to
programming paradigm might provide some insights into
future application development. In this paper, we
proposed a unified approach of composing distributed
game world based on that analogy. The implementation
shows promising results in the game demo. As the web is
becoming more and more computable and intelligent,
neural network based programming paradigm as

described in this article is likely to become the solution to
general purpose distributed software applications. NPL is
one recent effort in bringing general purpose
programming to a level that resembles the human brain.

References
[1] Singhal, S., and Zyda, M. Networked Virtual Environments:
Design and Implementation, ACM Press. 1999.
[2] Henry C.Ellis and R.ReedHunt. Fundamentals of Cognitive
Psychology. MC Graw Hill. ISBN: 0-697-10543-1
[3] GENESIS : The GEneral NEural Simulation System Version
2.2.1. http://www.genesis-sim.org/GENESIS
[4] Capps, M.; McGregor, D.; Brutzman, D.; Zyda, M.
“NPSNET-V: A New Beginning for Dynamically Extensible
Virtual Environments.” IEEE Computer Graphics and
Applications 20(5): 12-15 (2000).
[5] Jed Hartman and Josie. The VRML 2.0 Handbook: Building
Moving Worlds on the Web Wernecke (1996) Addison-Wesley.
ISBN 0-201-47944-3.
[6] Web3D Consortium. http://www.web3d.org/
[7] Murray Shanahan. “The Imaginative Mind A Precis.” Conf.
on Grand Challenges for Computing Research (2004)
[8] N.Rodriguez.C.Ururahy.R.Ierusalimschy, and R.Cerquera.
“The use of interpreted languages for implementing parallel
algorithms on distributed systems.” Euro-Par’ 1996 Parallel
Processing. Pages 597-600. Vol I.
[9] Cristina Ururahy, Noemi Rodriguez. “Alua: An event driven
communication mechanisms for parallel and distributed
programming,” PDCS-99, pp.108-113.
[10] Daniel Sánchez-Crespo Dalmau, Core Techniques and
Algorithms in Game Programming, New Riders Publishing,
ISBN : 0-1310-2009-9, 2003-9
[11] Joseph Manojlovich, et al. “UTSAF: A Multi-Agent-Based
Framework for Supporting Military-Based Distributed
Interactive Simulations in 3D Virtual Environments.” Winter
Simulation Conference 2003’.
[12] R. Ierusalimschy, L. H. de Figueiredo, W. Celes. “Lua-an
extensible extension language,” Software: Practice &
Experience 26 #6 (1996) 635-652.
[13] Adrian David Cheok, et al. “Human Pacman: A Mobile
Entertainment System with Ubiquitous Computing and Tangible
Interaction over a Wide Outdoor Area,” Mobile HCI 2003,
LNCS 2795, pp. 209–224, 2003.
[14] Ruck Thawonmas and Takeshi Yagome. “Application of
the Artificial Society Approach to Multiplayer Online Games: A
Case Study on Effects of a Robot Rental Mechanism,” ADCOG
2004’
[15] Manninen T. “Interaction in Networked Virtual
Environments as Communicative Action - Social Theory and
Multi-player Games.” IEEE Conf. Proc. CRIWG’2000.
[16] Bowman, D. A., and Hodges, L. F.. “Formalizing the
Design, Evaluation, and Application of Interaction Techniques
for Immersive Virtual Environments.” Journal of Visual
Languages and Computing, 10, p37-53.1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

