
Synthesizing Real-time Human Animation by Learning and Simulation

Xizhi Li
The CKC honors school of Zhejiang University

Computer Science Department
email: LiXizhi@zju.edu.cn

Abstract:
Real-time human animation covers a wide range of applications such as virtual reality, video
games, web avatars, etc. This paper presents a research framework aimed at synthesizing real-time
humanoid animation by integrating the variables of the environment into the controllers of the
human body and using a learning and simulation algorithm to calculate and memorize its motion.
Both the environment and the human body can be partially or fully controlled by an external user;
whereas the motion for the uncontrolled portion will be generated from an internal algorithm. To
produce realistic animation, the environment and the body movements are first fully controlled
until the animation system has discovered the patterns for the various combinations of the
different parts of the body and the environment variables; then only the environment and selected
parts of the human body are controlled, the system will generate the motion for the rest. The
advantages of the framework are (1) the motion is fairly realistic since it is based on examples. (2)
different parts of the human body may act less dependently; e.g. the top of the body might react to
other environmental changes other than synchronizing with the bottom of the body. The animation
system is included in a computer game engine we developed. Finally, how the research fits into
the large context of automatic motion synthesis in the game engine will be discussed.

Key words: Human Animation, Game Engine

mailto:LiXizhi@zju.edu.cn

The author’s note to himself:
2005-1-11: In the last month, I have tried many ways to express ST theory in a formal way, but not
very successful. The current article is a tentative description of the ST theory in the form of a
motion generation system. Father has backed up this theory with his insightful thesis written over
24 years ago. My manuscripts are in two volumes of scratch papers.
I have compressed f(t) using monotonic functions of its segmentations. The fact that a monotonic
function always has its inverse function is very important in the ST theory (even in Father’s
original manuscripts). The distribution of attentions is still the hardest part in the mathematical
formulation. HMM is a model that I have compared with ST1.
I have wanted to first develop a drawing application before implementing the motion system in
my game engine. The drawing application will draw ahead of the user in a different color (old
lines fade away). After some training the drawing application will be able to draw as the user does.

The title of this article is also motivated in the computer graphic class at ZJU. Sister Ying Liu’s
thesis [2] also gives me the initiative to carry on the job (character animation engine). The game
DOOM3 and Prince of Persia 2 were released shortly before I started writing the article. I
compared with them a lot. The thesis of Anim’99[1] provides me with some useful guidance on
the subject. Only section 2.3 is important in this paper. All other sections are either not finished or
reorganized from my previous work [3, 4] or other articles [1].

Obsolete formulae:

T

i c i i i i i cf (T + T) = f (T+ T), where att (T) f (T) T max { att () f () | 0 (T - T)}
x

x
x x dx x

+
≥ ≤∫

+
+ + i i+ i ≤ +

Contents:
1 Introduction...3
2 The Humanoid Motion Generation Framework..4

2.1 Motivation from the Simulation-Theory ...4
2.2 Review of the Simulation-Theory...5
2.3 Mathematical and Architectural Formulation ...6

2.3.1 Formulation of the Physical World..6
2.3.2 Formulation of the Motion Control System ..7
2.3.3 Motion Generation Algorithm...8
2.3.4 A Discussion of Performance..12

3 Implementation ...12
4 Application in the Game Engine ...12

4.1 Introduction to Automatic Motion Synthesis ..12
4.2 Animation System in the Game Engine ..14
4.3 Discussion of the Animation System ..15

5 Conclusion ..16

1 Introduction
Real-time human animation covers a wide range of applications such as virtual reality, video
games, web avatars, etc. When animating a character, there are three kinds of animation which are
usually dealt with separately in a motion synthesis system: (1) local animation, which deals with
the motion of its major skeleton (including its global speed), (2) global animation, which deals
with the position and orientation of the character in the scene, (3) add-on animation, which
includes facial animation and physically simulated animation of the hair, cloth, smoke, etc. This
paper mainly concerns about the local animation. Local animation is usually affected by the status
of the character (such as a goal in its mind) and its perceptible vicinity (such as terrain and
sounds).

The motion of a specified human character can be formulated by a set of independent functions of

time, i.e. 0{ () | 1,2,..., ; [,]}nf t n N t T= ∈ +∞ . These functions or variables typically control

over 15 movable body parts arranged hierarchically, which together form a parameter space of
possible configurations or poses. For a typical animated human character, the dimension of the
configuration is round 50, excluding degrees of freedom in the face and fingers. Given one such
configuration at a specified time and the static attributes of the human figure, it is possible to
render it at real-time with the support of current graphic hardware. Hence, the problem of human

animation is reduced to, given 0{ () | 1,2,..., ; [,]}n cf t n N t T T= ∈ and the environment W (or

workspace in robotics), computing { () | 1,2,..., ; [,]}n c cf t n N t T T T= ∈ + ∆ which should map

to the desired and realistic human animation.

The first option to motion generation is to simply play back previously stored motion clips (or

short sequences of{ ()}nf t). The clips may be key-framed or motion captured, which are used

later to animate a character. Real-time animation is constructed by blending the end of one motion
clip to the start of the next one. To add flexibility, joint trajectories are interpolated or extrapolated
in the time domain. In practice, however, they are applied to limited situations involving minor
changes to the original clips. Significant changes typically lead to unrealistic or invalid motions.
Alternatively, flexibility can be gained by adopting kinematic models that use exact, analytic
equations to quickly generate motions in a parameterized fashion. Forward and inverse kinematic
models have been designed for synthesizing walking motions for human figures [5, 6]. There are
also several sophisticated combined methods [1, 7] to animate human figures, which generate
natural and wise motions (also motion path planning) in a complex environment. Motions
generated from these methods exhibit varying degrees of realism and flexibility.

This paper presents a different motion generation framework aimed at synthesizing real-time
humanoid animation by integrating the variables of the environment into the controllers of the
human body and using a learning and simulation algorithm to calculate and memorize its motion.

Both the environment and the human body can be partially or fully controlled by an external user;
whereas the motion for the uncontrolled portion will be generated from an internal algorithm. To
produce realistic animation, the environment and the body movements are first fully controlled
until the animation system has discovered the patterns for the various combinations of the
different parts of the body and the environment variables; then only the environment and selected
parts of the human body are controlled, the system will generate the motion for the rest. The
advantages of the framework are (1) the motion is fairly realistic since it is based on examples. (2)
different parts of the human body may act less dependently; e.g. the top of the body might react to
other environmental changes other than synchronizing with the bottom of the body. In section 2,
we will introduce the theoretical basis for this motion generation system. In section 3, we will give
the implementation suggestion from its realization in a computer game engine we developed. In
section 4, we will discuss how the research fits into the large context of automatic motion
synthesis in the computer game engine which includes both global and local animations.

2 The Humanoid Motion Generation Framework

2.1 Motivation from the Simulation-Theory
Motivation of the proposed motion generation framework came from the introspection that human
beings are capable of generating first-person and third-person simulations in its brain. This
capability leads us to one of the famous hypothesis concerning the human brain, which is called
the Simulation-Theory (ST). The following two examples illustrate some of its basic ideas.
Example one: suppose you are now reaching out your hand for a cup of coffee, why would you do
this action? The hypothesis explains that you reach out your hand because you have simulated this
action in your brain slightly before you perform it. And you reach out your hand instead of using it
to move the mouse or stroke the keyboard (which might probably be the next actions if you are
using a computer at the same time), possibly because your attention is then on the feeling of thirst
and the cup of coffee. This does not mean that your brain was not simulating moving the mouse or
stroking the keyboard at that time. Instead, these actions might also being simulated then, but they
were neither performed nor emerged in the conscious brain because they were not magnified due
to a selection process of the attention. Example two: suppose you are driving a car when there
appear some people about to cross the road, how do you decide whether to brake your car or not.
The hypothesis tells that your brain is continuously simulating the observed motion of the people
ahead of time so that the attention of danger will not be signaled unless the simulation leads to a
similar dangerous situation stored in the mind. And because simulation takes place before it
actually happens, the redistribution of attention during simulation decides whether you brake or
not. I.e. If danger is signaled, the shifted attention will magnify (select) the brake simulation and
braking will be performed.

For years, researchers have suspected that the binding task (mind and brain) is accomplished by
nerve cells in distinct areas of the brain communicating between themselves by oscillating in
phase (40 hertz) -- like two different chorus lines kicking to the same beat even though they're
dancing in different theatres. These oscillations have been detected in everything from the
olfactory bulb of rabbits to the visual cortex of cats and even conscious humans. IBM,
Birmingham and Saint Mary's researchers believe they have explained not only how the
oscillations come about but also how the oscillatory rhythm is communicated from one area of the

brain to another. These two findings are critical to understanding how the complex electric signals
of large numbers of nerve cells generate awareness and perhaps even consciousness.

This coherency or synchronization among different groups of nerve cells is a sign of concurrent
simulations in the brain. According to the ST theory, by performing simulations in a similar
manner, it is possible to generate new motions for an animation system. In our proposed motion
generation framework, a learning and simulation algorithm is used to generate the motion for the
characters. We first combine the animation variables and all the related environment variables
which form the configuration space called DIM (dimension) space. Each variable or DIM in the
configuration space is a function of time f (t), t<=Tc. Any subset of these DIMs and a segment of
time [T1, T2] can be regarded as a simulation of these synchronized DIMs of length (T2-T1). An
attention mechanism is used to keep track of and select the most relevant simulation(s) for each
DIM. The value of f (T+⊿T) for every DIM is computed from its selected simulations unless
overridden by an external user (supervisor or environmental inputs). Details will be given in
section 2.3

2.2 Review of the Simulation-Theory
The Simulation-Theory (ST) is originally a theory about how the human brain generates visual
imagery. A recent description of this theory can be found in papers by Hesslow [8]. I will further
develop this theory or hypothesis to make it easy to understand from a computer point of view.

ST states that human imagination and visual/auditory perceptions are in essence the same thing in
our conscious mind, and that they are both the input and output of the unconscious mind which
does the work of recognition, memorization and deduction. The cycle of imagination and the
subconscious forms mostly a closed loop when we are asleep, and a biased loop (by what we
perceive) when we are awake. See Figure 1.

Imagination (mostly Conscious)
The Brain

Figure 1. Human Brain: The Imagery-subconscious loop

Metaphorically speaking, the Imagination can be thought of as a multimedia, virtual reality
“theatre” [9], where stories about the body and the self are played out. These stories,

Language

What I

Input/Output
The subconscious

Shall (do)

?
Sensory inputs Sound

~~!~!!~

!!!~~!~!

!!!~

Imagery:

#--#--#

III ***

Take action
Short-term memory

• are influenced by the present situation according to perception,
• elicit the subconscious activities accordingly,
• and thereby influence the decisions taken by action.

The following parts are the key ingredients in the ST theory. They are “dimensions of simulation”,
“concurrent simulation”, “imagery-subconscious loop” and “attention and memory”.

(1) dimensions of simulation. Any real world situation can be mathematically dissected into

infinite number of functions ()nf t with each evolving over the same time variable t. Given N

samplings of these functions, we obtain an N-dimensional simulation of a real world situation, i.e.

. Generally speaking, the similarity between the simulated

situation and the real world situation increases as the number of dimension N increases. So long as
the number of dimensions is high enough, the two very different systems (i.e. the simulated
system and real world system) are analogous to each other. We will propose later that the number
of concurrent simulations in the human brain is not one, but many; and they are simulated with
varying degrees of dimensions or similarities to the real world. Simulation with the highest
dimensions is most analogous to the real world situation and becomes our conscious or internal
perceptions. The brain mechanism controlling the selection of simulation dimensions is called
“Attention”.

0{ () | 1,2,..., ; [,]}nf t n N t T= ∈ +∞

(2) concurrent simulation. At any given time, our brain is simulating thousands of
visual/auditory/etc. situations concurrently. These simulations are all of high interest or relevancy
to the current state of the brain. But only a selected few are enlarged (i.e. their number of
dimensions is increased) to be perceptible in our inner world (consciousness).
(3) imagery-subconscious loop. This part has been described in many other literatures [8, 9]. It
just states that simulation in the human brain can evolve on its own, without interacting with the
real world. This is achieved by feeding the result of a simulation to the input of itself, hence
forming a loop between imagery and subconscious in the brain.
(4) attention and memory. Attention selects only a limited mount of imagery at any given time,
despite there might be millions of other stories that are being played (simulated) in the mind at the
same time. It is the constant selection of our attention that constitutes what we perceive as a
continuous consciousness. Attention replays a previously unmagnified simulation or memory clip
in the same sequential order as it was generated some time ago, therefore reinforced it in the
memory; it signifies the importance of such imagery by bringing it to our internal perceptions,
which in turn, makes it easier to affect subsequent imagery generation and selection of attention.

2.3 Mathematical and Architectural Formulation
To make things more precise, we now give a more formal formulation of the motion synthesis
problem for animated characters. Please see section 3 for the implementation of the formulation.

2.3.1 Formulation of the Physical World
The notation adopted here is loosely based on the conventions used in [10].

1. The 3D environment in which the characters move is denoted by W (commonly called the
workspace in robotics), and is modeled as the Euclidean space 3R (R is the set of real
numbers).

2. All local environmental variables are denoted by E∈e , a vector of m real numbers,
specifying the environmental or emotional states relevant to a certain character.

3. A character or agent is called A. If there are several characters, they are called Ai (i = 1, 2, …)
4. Each character A is a collection of p links Lj (j = 1, … , p) organized in a kinematic hierarchy

with Cartesian frames Fj attached to each link.
5. A configuration or pose of a character is denoted by the set P = {T1, T2, … ,Tp} of p relative

transformations for each of the links Lj as defined by the frame Fj relative to its parent link's
frame. The base or root link transformation T1 is defined relative to some world Cartesian
frame Fworld.

6. Let n denote the number of generalized coordinates or degrees of freedom (DOFs) of A. Note
that n is in general not equal to p. For example, a simplified human arm may consist of three
links (upper arm, forearm, hand) and three joints (shoulder, elbow, wrist) but have seven
DOFs (p = 3, n = 7). Here, the shoulder and the wrist are typically modeled as having three
rotational DOFs each, and the elbow as having one rotational DOF, yielding a total of seven
DOFs.

7. A configuration of a character is denoted by C∈q , a vector of n real numbers, specifying

values for each of the generalized coordinates.
8. Let C be the configuration space or C-space of the character A. C is a space of dimension n.
9. Let Forward(q) be a forward kinematics function mapping values of q to a particular pose P.

Forward(q) can be used to compute the global transformation Gj of a given link frame Fj
relative to the world frame Fworld.

10. Let Inverse(P) be a set of inverse kinematics (IK) algorithms which maps a given global

transformation Gj for a link frame Fj to a set Q of values for q. Each configuration ,

represents a valid inverse kinematic solution (Forward(q) positions the link Lj, such that the
frame Fj has a global transformation of Gj relative to Fworld). Note that the set Q may
possibly be infinite, or the empty set (no valid solutions exist).

Q∈q

2.3.2 Formulation of the Motion Control System
Any motion for the character (including the changes in its local environment) will trace out a
curve (i.e. a path) in this multi-dimensional space as illustrated in Figure 2. The curve is normally
a piecewise continuous function of time (i.e. a trajectory). Conceptually, the fundamental goal of
the motion synthesis strategy is to generate trajectories in the configuration space, so that they are
in harmony (e.g. trajectories of the environment variables match the desired trajectories of the
animation variables.). The character will either act out its planned motion or the one dictated by a
supervisor. In whichever ways, the character will observe its final actions and always consider
them to be in harmony. The continuous observation provides the basis for the generation of its
future harmonious motions.

Reappearing patterns occurred at the same time segment
for groups of dimensions

4dT

Figure 2. Motions for a character trace out a time-parameterized curve in the multi
dimensional space.

1. A snapshot of a motion at time t is denoted by f (t) = i<f (t)> D, where D = E C∈ ∪ . f (t) is

a vector of N = (m+n) real numbers. The vector space D is called DIM (dimension) space
which combines the configuration of the environment variables and that of the animation
variables.

2. A simulation is defined as sim(n, t1, t2) =
in i{f (t), t [t1,t2]|n }∈ ∈n , where

 { |1 , }i i N i⊆ ≤ ≤ ∈Νn

3. Let ALL (t) be a set of N functions of time t, also defined by sim({1,2,…,N}, 0, t).

Let f (i, t) := ()if t denote the ith dimension or componet of ALL (t).

2.3.3 Motion Generation Algorithm
In this section, we will propose the motion generation algorithm. A motion system is denoted by
motion (Tc) := < Tc, ALL (t), attention, relation, User >. Let MoGen denote the motion
generation algorithm so that motion (t+⊿t) = MoGen (motion (t)).

Tc is the current time, where Tc>=0.
ALL (t) has the same definition as in Section 2.3.2, where 0<=t<= Tc.
attention is a function mapping each component of ALL (t) to a value att (t), it is also written as

att (t):= i i i i{att (t)| f (t) (t)(att (t)=attention(f (t)))}∀ ∈ALL

relation is an N dimensional matrix. The value Ri,j = relation(i,j) denotes the degree of relativity
between f (i, t) and f (j, t) for all t.
User is an external supervisor. It has the right to override values in ALL (t) for all t. User is an
unknown process to the motion system, but is executed at the end of every time slice.

motion (t+⊿t) is computed from motion (t), using the following iterative process.

f(1,t)
f(2,t)

f(n-1,t)
f(n,t)

.

.

.
.
.
.

2dT

t=0 t=T t=T+dT

(1) i c i i i cf (T + T) = f (T+ T), where T satisfies att (T) max {att (t) | 0 (T - T)}t= ≤ ≤+ + + if no

external input from the User; otherwise . Fori c i cf (T + T) = User (T + T)+ + (,)c ct T T T∈ ++ , an

interpolation function can be used such as

. After this step, ALL (t) of motion (Tc+

⊿t) can be obtained.

i i c i c c if () = (f (T + T)- f (T)) / T (T) f (T)t t× − ++ + c

(2) Compute att (t) of motion (Tc +⊿t) from att (t) of motion (Tc) and ALL (t) of motion (Tc+
⊿t), using Simulation-theory(ST rules). See Figure 3 (att (t) denotes att (t) of motion (t)).

ALL(t+⊿t) att (t+⊿t) ALL(t+2⊿t) att (t+2⊿t) att (t)

User input User input

Figure 3. Iterative process of the motion generation algorithm
Simulation-theory (ST rules) is the center of the algorithm. It is used to calculate the redistribution
of attention for ALL (t). To express the ST rules more clearly, the encoding of ALL (t) is given
and a few other related helper functions are also defined.

ALL (t) is encoded using the following method. For every component f(i,t) of ALL (t), partition
f(i,t) into minimum number of segments such that f(i,t) is monotonic in each segment.

1

i k i 1
k=0

f (t) = q (),where q () f (t+) if 0 t or q () 0 otherwise
num

k k k k kt T t T T t
−

+− = ≤ ≤ =∑ .

is the set of bending points in f (t), where T0=0, Tnum=f(Tc+⊿t).

is the set of all segments in the time domain.

{ }kT

k k+1{[T ,T]|k=0,1,...,num-1}

For every component y=f(i,t) of ALL (t), define its inverse functions as:
i = q(t, y), where e.y = f(i, q(t, y)) and e is a unit vector with the same dimension of i. We can use
this function to get the index of components of ALL (t) which has the value of y at time t.
t = g(i, y), where e.y = f(i, g(i, y)) and e is a unit vector with the same dimension of t. We can use
this function to get the list of time when the ith component of ALL (t) has the value y.
ALL (t) is stored in the form of t = g(i, y), since it will be used most frequently in our algorithm.
g(i, y) can also be rewritten as below, where ToVector({Xi}) := [X1,…,Xn].

 -1 -1 -1
k k k k+1g(i, y) =ToVector({t| k num(t=q (y) iff (q (0)-y) (y-q (T) 0))})∀ ≤ ≥i

Figure 4. Data presentation of g (i,y)

Figure 4 shows the data present .). E.g. in the above curve,

 of error is

associated with each curv which will be increased if our algorithm hits on the sub curve.

ete the s

ow we are ready to give the ST rules which are expressed in the form:
e rules used to modify

ation of g (i,y) (i is some fixed value

g(i,10)=[3,7,9]. When implementing this data presentation, each q (t) can be further compressed

using parameterized analytical equations, when a certain tolerance allowed. In other

words, some sub curve q (t) can be combined, if they are similar. An integer counter C is

Some rules are used to del ub curves from g(i,y) whose counter value is comparatively
small in order to keep the size of g(i,y) constant when the length of curve increases (t → +∞).

i

i i

e iq (t) ,

N
att (t+⊿t) = ST3(ST2 (ST1(ALL(t))), att(t)), where ST1, ST2, ST3 are thre
the attention for the motion generation system. Each rule is given below with their explanations.
ST rule 1

2 2((, ((1)))) /(2)

0

11(()) : ()
(1) 2

i c

maxlen
t g i f T k T

i
k

ST f t e
k

σ

πσ
− − + −

=

=
+∑ +

ST1 searches each f(i,t) of ALL(t) for the longest sequence of matching sub curves in the form

i c cf (t), t [T + T- Len, T + T],(Len= T maxlen)∈ ×+ +

, indicating how the curves near t resembles the latest occurring curves. The

colored boxes in Figur

+ + + . ST1 returns a value for each t

e 2 show the effect of ST1. The curves in these boxes resemble the latest
occurring curves (its color also shows the degree of similarity). Figure 5 shows the curve of ST1
for a sample f(t).

()ct T T Len< + −+ +

… …

y=f(i,t)
10

5

1
T0 T1 T2 T3 T4 T5T6 T7 T8 T9 T10 t

y 1 2 3 5 6 8 10

10

q8(t) q6(t)

10 3 2 3 10 6

q4(t) q5(t)

8

q0(t) q2(t) q1(t) q3(t) q9(t)

1

q7(t)

2.5

Figure 5. Sample curve of ST1

ST rule 2

1

0

2(()) ()
N

i
i

ST t x t
−

=

= ∑x , where x is an N dimensional vector of functions

ST2 is the rule used to find synchronizing positions in a set of functions of t. In the algorithm, the
result from ST1 is used as input of ST2, i.e. ST2 (ST1 (ALL (t))). It does so by simply
summarizing the components of x(t). The result of ST2 is just a single function of time, showing
the places in the time domain where the reappearing patterns of x(t) occurs. Figure 6 shows the
sample curve of ST2. The apex of its convexes denotes the center of synchronization position.
And its magnitude is roughly denotes the number of synchronization component. In ST theory,
maximums in the curve of ST2 are the places in the time domain, where different kinds of
simulations may occur. The attention mechanism will select among these simulations to decide
the next output for the motion generation system.

Figure 6. Sample curve of ST2
ST rule 3

3((), ()) attention(divide([sort{ }by ()], ()))i

i

T T

i T
ST x t att t T x t dt att t

+
= ∫

+
, where {Ti} are the

maximums in the curve of x(t). (x(t) is usually the result of ST2.)
ST3 is the rule used to generation the attention. It first sorts {Ti} by the area of a small region

after Ti along the x(t) curve. Then it use a divide function to partition all f(i,t) into{

according to att(t) and the sorted maximum points. In Figure 6, a possible division would be

i, ja j i{f (t)} }

ST1

f(i,t)

t

x(t)

t

.

.

.

1
2
3
.
.
N-1
N

ST2

t

{{f(1,t), f(2,t), f(N-1,t)}, {f(3,t), f(N,t)},…}. Each group is synchronized by one of the time in
{Ti}. After deciding this division, the new att(t) are generated, so that the attention for
components in the ith group is raised to a value at least higher than all other positions in the time
domain of that component. Components in the same group form a specific simulation which can
be used to generate subsequent motions for these components. A general degradation is performed
in att(t), so that the total amount of attention is a constant. The division function is affected by
both the result from ST2 and the last distribution of attentions. Because the divide function is
flexible, different motion generation systems might adopt different divide criterion and no details
of it will be given here. However, as a general rule, we should try to minimize the total number of
groups (simulations) during the division. The relation matrix can be used in the divide process to
minimize the number of groups. E.g. components of high relevancy tend to be included in the
same group.

2.3.4 A Discussion of Performance
When implementing the algorithm, a lot of things can be simplified. The data structures for ST1,
ST2 and ST3 can be in the form of list of key points, since the information in their curves are few
compared to the length of their time domains.
The space complexity of the algorithm is O(Fea*N). Fea is the average number of reoccurring
patterns (simulations). N is the number of dimensions in ALL(t).
The time complexity of ST1, ST2, ST3 can be O(log(Fea)* Fea*N), O(N), O(N*N*N)

respectively. So the total time complexity of the algorithm is . In a

typical case of humanoid animation system, Fea is usually several hundreds and N is usually
round 50. It is possible to use the motion generation algorithm for real-time character animation.

3O(Fea log(Fea) N+N)× ×

3 Implementation
In this section, we will give the implementation suggestion from its realization in a simple
computer game engine we developed.
To be continued.

4 Application in the Game Engine
In this section, we will discuss how the research fits into the large context of automatic motion
synthesis in the computer game engine which includes both global and local animations.

4.1 Introduction to Automatic Motion Synthesis
First of all, the proposed motion generation algorithm is not the replacement to all local animation
solutions in a computer game engine, due to performance and other requirements such as precision
and ease of development. It is up to the game developers to decide when and which characters are
going to use a certain kind of animation engine.

Figure 7. Resources available for motion synthesis [1]

Their presentation and implementations can be found in my other literatures [3, 4]. Generally
speaking, the new motion generation system is used in the game engine only for the main
character(s) when it is in the view frustum. Now, we are going to see how to divide the control
variables relevant to the character between the global motion planning and local motion
animation.

Figure 8 (left) shows a typical character. For fast motion synthesis, we want to only consider
planning for the degrees of freedom that affect the overall global motion of the links of a character
(i.e. the root joint DOFs). For the joint hierarchies we used, each of the 6 degrees of freedom of
the Hip joint falls into this category. The idea is to compute motion plans for these DOFs (which
we shall refer to as active DOFs or active joints), while the remaining joints (which we refer to as
passive DOFs or passive joints) are either held fixed or controlled by a local animation algorithm.
For our navigation strategy, passive joints are animated either by the new motion generation
system or by cycling through a clip motion locomotion gait. However, passive joints could also
potentially be driven by the active joints with their motion computed using a simple mathematical
relation or even a sophisticated physically-based simulation (e.g. the motion of a character's hair
in response to the gross motions of the head. In these cases, I call them add-on animations.).

Figure 8. The major joints in the kinematic hierarchy used for locomotion are shown, along
with the number of DOF for each joint.

Moreover, we can further reduce the dimensionality (and hence the efficiency) of the planning
phase by considering only a subset of the active joints when possible. For instance, if we assume
that the character navigates on a surface, we can omit one of the active translational DOFs (the
height of the Hip joint above the surface), as well as two of the active rotational DOFs (by
assuming the figure's main axis remains aligned with the normal to the surface). Suppose all of the
passive DOFs and the omitted active DOFs are driven by a controller that plays back a simple
locomotion gait derived from motion capture data. By approximating the character by a suitable
bounding volume (such as a cylinder), that bounds the extremes of the character's motion during a
single cycle of the locomotion gait, we have effectively reduced the navigation planning problem
to the 3-dimensional problem of planning the motion for an oriented disc moving on a plane.
Figure 8(right) shows one of the characters used in our experiments along with its bounding
cylinder.

In case we do not want to generate location from recorded motion clips, we can use the new
motion generation algorithm. The control variables that should be taken from the global animation
are the velocities for all the DOFs of the character’s root joint (Hips). Behavior commands can
also form a special dimension in the algorithm. The environmental variables such as a sound
source or terrain features relative to the character or its emotions can also be included as different
dimensions in the algorithm. All these additional dimensions are overridden by the User (as is
called in our algorithm) and used to for the motion generation system to produce motions for the
rest of the dimensions.

4.2 Animation System in the Game Engine
In ParaEngine (the name of our computer game engine), several global timers are used to
synchronize engine modules that need to be timed. Figure 9 shows a circuitry of such modules
running under normal state. The darker the color of the module is, the higher the frequency of its
evaluation. The local animation system is part of the rendering engine and is evaluated at a very
high frequency. In other words, by the time the animation system is called, (1) user or script
commands have already been interpreted into valid actions of the character, (2) global
path-planning has already been processed and the character knows its preferred and valid position,

orientation and velocity in order to reach its destination on the map. Hence the task of the
animation system in the game engine is to choose a right pose for the character and render it so
that its animation matches its global velocity and action descriptions. It is also possible to let the
animation system deal with all the add-on animations (hair, cloth, smoke, etc) and slight variations
on the terrain.

Figure 9. Engine modules and their evaluation frequency

In the game engine, there are two skeleton animation options, which can be used simultaneously.
One is using pre-recorded motion clips; another is using the proposed motion generation algorithm.
Figure 10 shows a screen shot of many animated characters in a game scene constructed by our
game engine.

Figure 10. Screen shots from Parallel World game

4.3 Discussion of the Animation System
One of the disadvantages of using the proposed motion generation algorithm is that it needs to
maintain a relatively large amount of data for each of its animation instance. Yet, with
pre-recorded motion clips, only the animation index of two adjacent animation sequences and a

Environment
simulator

Script engine:
NPL runtime

IO event handler

Rendering engine

Physics & Biped
positions

AI modules
Strategies

Local triggers

Remote script
Network modules

Keyboard &
mouse response

Local animation
system

Camera and player
control

As fast as possible
<=1/60 sec

Faster than the user input
<= 1/30 sec

Faster than the user’s brain

Faster than user’s eyes
<= 1/30 sec

<= 1/30 sec

2D GUI engine

frame counter for the current animation need to be kept for each instance. Hence, for large
quantity of animation instances, motion clips based animation is still the preferred choice.
However, when there is only a single character to control, as in many role playing games, the
proposed motion generation system will produce more diversified and realistic animation. In
reality, we can mix these two approaches even on the same game character. For example, when a
character first came into the camera view, we can decide which animation system to use and use it
until the character is out of the view.

To be continued

5 Conclusion
The fundamental challenges in computer graphics and animation lie primarily in having to deal
with complex geometric, kinematic, and physical models. The development of better software
tools has advanced the state of the art in the modeling and rendering of these models. However,
software tools for the automatic generation of motion are still relatively scarce. In particular,
techniques are needed to animate both autonomous and user-controlled human figures naturally
and realistically in response to high-level task commands. Motivated by the Simulation-theory,
this paper proposes a new motion generation system for real-time character animation. By using
the proposed algorithm, the generated motion is fairly realistic and different parts of the character
may act less dependently. Another advantage is that it no longer needs to manually build and
maintain a large database of motion clips; instead, the algorithm will automatically learn and
reapply known patterns according to the states of the character and its local environment.

The proposed algorithm is actually a general learning algorithm, which can be applied to a number
of learning tasks. Human animation is an ideal test bed for the proposed algorithm.

Reference:
[1] Kuffner, J. J., Autonomous Agents for Real-Time Animation. Ph.D. thesis, Stanford University,

1999.
[2] Ying Liu, Interactive Reach Planning for Animated Characters using Hardware Acceleration.

Ph.D. thesis, U. Penn, 2003.
[3] Xizhi Li. “Using Neural Parallel Language in Distributed Game World Composing”. In the

Proceedings of IEEE Distributed Framework of Multimedia Applications 2005. (to be
published)

[4] Xizhi Li. “ParaEngine: A Game Engine Framework for Distributed Internet Games”. (ready to
submit)

[5] M. Girard and A Maciejewski. Computational modeling for the computer animation of legged
figures. In Proc. of SIGGRAPH '85, 1985.

[6] R. Boulic, D. Thalmann, and N. Magnenat-Thalmann. A global human walking model with
real time kinematic personification. The Visual Computer, 6(6), December 1990.

[7] S.-K. Chung and J.K. Hahn. Animation of human walking in virutal environments. In In
Proceedings of CA '99 : IEEE International Conference on Computer Animation., pages 4{15,
Geneva, Switzerland, May 1999.

[8] Hesslow, G. (2002) “Conscious thought as simulation of behaviour and perception.” Trends in
Cognitive Sciences, 6:242-247

[9] Murray Shanahan. The Imaginative Mind A Precis. Conference on Grand Challenges for
Computing Research (gcconf 2004)

[10] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,
1991.

	Introduction
	The Humanoid Motion Generation Framework
	Motivation from the Simulation-Theory
	Review of the Simulation-Theory
	Mathematical and Architectural Formulation
	Formulation of the Physical World
	Formulation of the Motion Control System
	Motion Generation Algorithm
	A Discussion of Performance

	Implementation
	Application in the Game Engine
	Introduction to Automatic Motion Synthesis
	Animation System in the Game Engine
	Discussion of the Animation System

	Conclusion

