
ParaEngine: A Game Engine Framework for Distributed Internet Games

Xizhi Li
The CKC honors School of

Zhejiang University, P.R. China
LiXizhi@zju.edu.cn

Abstract:
Modern computer game engine has evolved to become a complete suite of virtual world constructing tools
and runtime environment. The latter is usually a tightly integrated framework of 3D rendering engine,
scripting engine, physics simulation and networking. This framework design as well as individual
component implementations decides the general type of games that could be composed by it. This article
proposes a game engine framework called ParaEngine for developing games based on distributed game
world data and logic. Its framework design is based on a modified version of Simulation Theory about the
human brain. It has long been observed that our brain is both a distributed computing environment and a
theatre of multimedia (internal perceptions). The analogy of human cognition to simulation system has
been applied to the proposed game engine to construct distributed Internet games. The implementation is
illustrated in an RPG game demo called Parallel World.

Key words: game engine, NPL, simulation theory, Web3D

- page 1 of 11 -

mailto:LiXizhi@zju.edu.cn

1 Introduction
If we compare (1) web pages to 3D game worlds, (2) hyperlinks and services in web pages to active
objects in 3D game worlds, and (3) web browsers and client/server side runtime environments to
computer game engines, we will obtain the first rough picture of distributed Internet games. It is likely
that one day the entire Internet might be inside one huge game world.

Most distributed Internet games today have a web-alike topology. It aims to build lots of 3D game
worlds and connect them by hyperlinks. For example, Web3D technology [4] such as X3D language is
exploiting a new possibility of expressing networked virtual environment that is as distributed as web
pages and more interactive than just hyperlinks. Most of its applications involve a static assembly of
dynamic scene data from one or several file servers on the Internet. Most virtual reality (VR) or
augmented reality (AR) based computer games [7] have inevitably taken this approach. The advantage
of the web-alike topology approach is that it is easy to implement and the underlying metaphors are
familiar to both developers and users.

In this paper, another approach for constructing distributed Internet games is discussed. It has its
metaphor found in the human brain. It has long been noticed that our brain is both a distributed
computing environment and a theatre of multimedia (internal perceptions and simulations). Hence, the
analogy of human cognition to simulation system might provide some insights into future distributed
3D applications. In [1], I have described a neural network based programming paradigm and shown
how it is applied to composing distributed computer games. When we examine a programming
paradigm (such as for the game engine to construct the game worlds), we need to look at how its
computing is related to visualization. Taking the HTML pages for instance, firstly different parts of a
web page are assembled from the network, secondly their visualization is computed, thirdly user
interaction occurs, and finally new pages are downloaded. Taking object oriented (OO) programming
for another instance; it applies well-known patterns such as event driven and MVC (model, view and
controller). In our game engine framework, the programming paradigm is motivated by the
introspection that human beings are capable of generating first-person and third-person simulations in
its brain. This capability leads us to one of the famous hypothesis concerning the human brain, which
is called the Simulation-Theory (ST) [3]. The theory will be reviewed in this paper with regards to its
selected implementations in the computer game engine. According to the ST theory, by performing
simulations in a similar manner, it is possible to synthesize automatic animations which react to
external stimuli. Because animations are generated (elicited) from dynamic combinations of
simulations (which might physically located at different places on the web), the game world and logic
are also distributed.

In this paper, we will first review the Simulation theory concerning human cognition and see how it
can be applied in a computer game engine; then we will discuss the special requirement imposed to
the game engine; finally we will give more details on some selected implementations.

2 Review of the Simulation-Theory
The Simulation-Theory (ST) is originally a theory about how the human brain generates visual
imagery. A recent description of this theory can be found in papers by Hesslow [3]. A more formal
mathematical formulation of ST is given by me in [9].

ST states that human imagination and visual/auditory perceptions are in essence the same thing in our
conscious mind, and that they are both the input and output of the unconscious mind which does the
work of recognition, memorization and deduction. The cycle of imagination and the subconscious
forms mostly a closed loop when we are asleep, and a biased loop (by what we perceive) when we are
awake. See Figure 1.

- page 2 of 11 -

Imagination (mostly Conscious)
The Brain

Input/OutputLanguage
What I

Figure 1. Human Brain: The Imagery-subconscious loop

Metaphorically speaking, the Imagination can be thought of as a multimedia, virtual reality “theatre”
[9], where stories about the body and the self are played out. These stories,
• are influenced by the present situation according to perception,
• elicit the subconscious activities accordingly,
• and thereby influence the decisions taken by action.

The following parts are the key ingredients in the ST theory. They are “dimensions of simulation”,
“concurrent simulation”, “imagery-subconscious loop” and “attention and memory”.

(1) dimensions of simulation. Any real world situation can be mathematically dissected into infinite
number of functions ()nf t with each evolving over the same time variable t. Given N samplings of
these functions, we obtain an N-dimensional simulation of a real world situation, i.e.

. Generally speaking, the similarity between the simulated
situation and the real world situation increases as the number of dimension N increases. So long as the
number of dimensions is high enough, the two very different systems (i.e. the simulated system and
real world system) are analogous to each other. We will propose later that the number of concurrent
simulations in the human brain is not one, but many; and they are simulated with varying degrees of
dimensions or similarities to the real world. Simulation with the highest dimensions is most analogous
to the real world situation and becomes our conscious or internal perceptions. The brain mechanism
controlling the selection of simulation dimensions is called “Attention”.

0{ () | 1,2,..., ; [,]}nf t n N t T= ∈ +∞

(2) concurrent simulation. At any given time, our brain is simulating thousands of visual/auditory/etc.
events concurrently. A dimension f(t) may be reused for different simulations at different times.
Concurrent simulations are of high interest or relevancy to the current state of the brain. But only a
selected few are enlarged (i.e. their number of dimensions is increased) to be perceptible in our inner
world (consciousness).
(3) imagery-subconscious loop. This part has been described in many other literatures [3, 5]. It just
states that simulation in the human brain can evolve on its own, without interacting with the real world.
This is achieved by feeding the result of a simulation to the input of itself, hence forming a loop
between imagery and subconscious in the brain.
(4) attention and memory. Attention selects only a limited mount of imagery at any given time,
despite there might be millions of other stories that are being played (simulated) in the mind at the
same time. It is the constant selection of our attention that constitutes what we perceive as a
continuous consciousness. Attention replays a previously unmagnified simulation or memory clip in

Shall (do)
?
Sound
~~!~!!~
!!!~~
!!!~

!~!Imagery:
#--#--#
III ***

Sensory inputs

Short-term memory

The subconscious

Take action

- page 3 of 11 -

the same sequential order as it was generated some time ago, therefore reinforced it in the memory; it
signifies the importance of such imagery by bringing it to our internal perceptions, which in turn,
makes it easier to affect subsequent imagery generation and selection of attention.

3 ParaEngine Framework
In this section, we will propose software architectures to realize that theory to some extent. Instead of
evaluating a theory, our framework is specially designed as a computer game engine for distributed
Internet games. The implementation is illustrated in an RPG game demo called Parallel World (see
Figure 2). Everything in the figure is mental elicitation of a neural network constructed by NPL (The
scripting language and runtime environment for the game engine). Script files contain the logic for
individual neurons and may be deployed on as many computers as the number of files used in
composing the game world itself. In the demo, players may complete complex tasks in a very large
animated game world. It can be regarded that the players’ minds are sharing a simulation space with
another (artificial) neural network on the Internet. The only difference is that each of us has only one
attention, whereas the artificial neural network may have many.

3.1 Overview of ParaEngine
ParaEngine is driven by an active neural network functioning on the Internet. In the engine framework,
Neural Parallel Language or NPL is used to construct and run the neuron network. The logics defined
in the NPL scripts decide how different combinations of neurons are synchronized to perform special
simulations and how old simulations are broken and new simulations are formed. The continuous
visualization of many concurrent simulations performed by the NN constitutes the animation that the
player may see and interact with. However, a realistic visualization needs lots of other information
such as mesh and texture data of 3D models. Therefore, the responsible neurons (or script files) must
tell the Game Engine game-related information upon activation whenever an internal state has been
reached. This is done through a set of game specific API called Host API or by feeding to the engine
an X3D (VRML) file [4] which defines corresponding visual elicitations. (We use a dual programming
language model [6] in NPL. In this model, there are two distinct language systems: one is host
language, the other is extension language. These two language systems could communicate at runtime
through user-defined Host API.) The game engine also provides a local simulation environment, which
is different from the simulation performed by the NPL. (Local simulation treats everything as an
object with certain physical properties.) Both the user and the camera system help to select a small
portion of the locally simulated environment and present it in cutting-edge multimedia forms to the
user. The user might interact with these objects. The local simulation engine then translates such
interactions (sensory inputs) back to valid neuron stimuli (which will affect NPL based simulation).
And the whole system will be functioning as seen in Figure 2 with text, buttons, graphics and sounds.

Figure 2. Screen shots from Parallel World game

- page 4 of 11 -

In section 3 of [1], we have proposed Neural Parallel Language (NPL) and its programming paradigm.
NPL is the script engine in the game engine framework. We will not review here how a neural network
can be composed and simulated on the Internet. Instead, the rest of the paper will focus on how other
modules of the game engine should be designed to satisfy the NPL scripting paradigm. Some key
requirements for the game engine are shown below. They are natural consequences of adopting the
framework of the Simulation theory, which has limited the choice of data presentation techniques and
common algorithms [8] used by the game engine, such as collision detection and response,
path-finding, etc.
List of game engine requirements:
- Neural Parallel Language. The neuron network (script files) and its visual elicitations are all turned
into named Internet assets. There will be no explicit network modules in the game engine; instead
NPL runtime will handle all distributed computing in a network transparent manner.
- Scripting. Everything in the game world should be scriptable, such as resource management, maps,
active objects, 2D GUI, camera and object control, etc. This will give NPL full control of the
simulated environment through scripting.
- Real coordinates. All scene objects are specified in real coordinate system in the game engine. This
ensures that there is no boarder or tiles to restrict the positioning of game world objects, although this
might cause some troubles in collision detection and path-finding.
- Absolute positioning. Although the scene graph is hierarchically structured e.g. in a quad tree,
absolute values are used to store the positions of objects in the game engine. This is required by our
simulation algorithm. Since we will concurrently simulate a large set of objects which might be
geographically far from each other, relative positioning will cause too much computation. More details
are given in Section 3.6.
- Dynamic scene loading. The 3D world can be dynamically loaded and modified in very fine grains
and real-time efficiency should be achieved. This is because the simulation environment will be
constantly changing, if attention of NN keeps shifting from one place to another. (e.g. a player flies
through a long distance in the game world, causing many simulations (on the Internet) to be aroused
and decayed.) The user, however, must enjoy a continuous visual experience of the changing
simulation space, just like in our own imaginative mind.
- Wide area simulation. There is no central simulation scheme in the game engine. This is because as
the neural network feeds a new elicitation (a translated simulation) to the game engine it must be able
to run it together with all other elicitations that are already seen by the game engine. The termination
of a simulation depends on time out, memory capacity or explicit commands. (Even the human brain
has a maximum capacity in the volume of concurrent simulations.) This also explains the reasons of
the above three requirements.
- Physics and path-finding. Physics and path-finding are build-in routines of the game engine. For
efficiencies, they will not be programmed in NPL. Even our dream worlds are perfectly collision free
and follow some basic laws of physics. It is very likely that there is a mechanism in our brain that
keeps all of its simulations from making obvious mistakes. And because this mechanism is still
unknown and hard to be programmed in NPL, we will realize it in the simulation engine as relatively
fixed code.
- Error tolerance. The simulation engine should not only tolerate overlapping of rigid objects, but
also correct it if one of the objects is movable. In other words, the neuron network run by NPL might
make mistakes in positioning objects, yet the game engine should accept such mistakes as valid
actions; and automatically and gradually transform group of ill-positioned objects into rational form.
- Garbage collection. Because the game engine is viewed as an imagination simulation space, it will
not be long before it is filled with too many 2D/3D resources and their instances dumped by the neural
network. An automatic garbage collection mechanism must exist so that unused text, textures, sounds,
graphics, geometries, animations, etc. can be removed from the memory without human intervention.
- Efficiency. The computation for all simulation in the game engine must be roughly proportional to
the number of concurrently active objects rather than to the geographical size of the map (game world).
Computation means physics, path-finding and rendering. In other words, the selected algorithms must

- page 5 of 11 -

be guaranteed to finish within limited time.

In the following sections, we will cover basic implementations in the ParaEngine for a selection of the
above requirements.

3.2 Game world logic
One of the major tasks of a computer game engine is to offer language and tools for describing Game
World Logic in an engine digestible format. Usually the logic of the entire game world can be further
partitioned into three subcategories of programming: (1) script programming which is most flexible
and can be distributed in many files (2) C++ programming which extends basic functionalities already
provided in the engine core, (3) Engine programming which is fixed with the release of the engine.
Our objective in designing ParaEngine is to let Scripting do as much as possible. Please see Figure 3.
The color in it denotes the assignment of programming category to computational tasks in composing
game world logic.

Entire game world logic Environment simulator

Figure 3. Game world logic in ParaEngine
In the figure, AI controllers are C++ code based AI modules that should not be confused with
Script-based AI. AI controller is the best choice whenever performance is most critical. They can be
assigned to Biped Scene Object. The association of biped object and AI controller is entirely arbitrary
and reassignment is also allowed during game play through scripting. For example, in the game demo
Parallel World, a “Follow” Controller and “Evade” Controller were written in C++ code, so that when
assigning a NPC creature to both of them, it will have the ability to follow automatically a moving
target (avoiding all obstacles in its view perception) as well as evade a target according to its unit type
(melee or ranged). Both the AI controller assignment and controller-control are available as host APIs
in the script language used by the game. A useful conclusion of this section is that although we hope to
build everything from scripts, there still exist some places where current scripting technology is not
eligible or suitable to use. In other words, languages such as (VRML + Java) might alone be capable
of static and/or interactive 3D information visualization on the web, it is not sufficient, though, to
implement all game world logics required by a modern Internet computer game in an efficient way.
This is one reason why a game engine framework like ParaEngine is still needed to build the
aforementioned type of games.

Physical law && Pass1

Engine

Script
C++ code

Temp data

Path-finding Biped perception:
active and solid

object list in its view
radius

Pass2 AI controllers

Delta Time

Further
controlled by
user and script

Biped

AI Controllers:
Follow Controller ()
Evade Controller () Script

…… Timer Controller ()
…

- page 6 of 11 -

3.3 Timing and engine modules
In ParaEngine, several global timers are used to synchronize engine modules that need to be timed.
Figure 4 shows a circuitry of such modules running under normal state. The darker the color of the
module is, the higher the frequency of its evaluation.

Figure 4. Timing and I/O in ParaEngine

3.4 Scene object and asset entity
The entire 3D game world is composed of 2 sets of objects. The first set is called scene objects and the
second set is called asset entities. The scene objects have nothing to do with graphics; it is usually just
a mathematical presentation of an object in the game world, such as the size and position of a
character. The scene object is NOT concerned with how it is finally rendered to screen by a video card,
however, each of them is associated with one or several asset entities. These asset entities are usually
textures, mesh and animation data that would tell the rendering pipeline how they will be finally
displayed in the screen.

- Asset entity. Asset entity can be created at any time during the game. In most cases game assets are
batch loaded at the beginning of a new simulation by a script. Asset entity itself must be associated
with scene object to take effect. And scene object must be bound to asset entity in order to be rendered.
The same asset can be shared among many scene objects. Because asset entity is usually named
Internet resource and referenced during a visual elicitation by NPL neuron files, there is an asset
manager running in the background, which (1) ensures the same asset can only be loaded once, (2)
decides whether to refresh the asset from network or use a local copy, (3) garbage-collects any unused
assets in memory.
- Scene objects. The scene objects are organized in a tree hierarchy, which is optimized for
geographical searching of individual objects. In ParaEngine, all game objects are in 2.5D real
coordinate system and roughly organized in a special spatial quad-tree (See Figure 5). This choice
might limit the type of game that it could compose, but is suitable for distributed simulation of all
mental elicitations by NN and fast collision detection and path-finding in real coordinate system. The
scene graph will automatically expand itself as new objects are attached to it. Although most objects
are dynamically inserted into the scene graph tree according to their geographical locations, there are
some special objects that do not follow this rule. These objects are active objects that need global
simulations. For example, some mobile biped object is attached to the Terrain Tile in which it is active,
instead of to the tile that best contains it. We know that when the rendering pipeline transverses the

Environment
simulator

Script engine:
NPL runtime

IO event handler

Render Scene

Physics & Biped
positions

AI modules
Strategies

Local triggers

Remote script
Network modules

Keyboard &
mouse response

Smooth local
animations

Camera and player
control

As fast as possible
<=1/60 sec

Faster than the user input
<= 1/30 sec

Faster than the user’s brain

Faster than user’s eyes
<= 1/30 sec

<= 1/30 sec

2D GUI engine

- page 7 of 11 -

scene graph tree, only objects near the camera are visited; however, when the simulation pipeline
transverses the tree, all active objects must be covered regardless whether they are near the camera or
not. Therefore by moving active objects up near the tree root and using absolute values to store their
positions in the scene, it ensures that they can get simulated in simulation pipeline. We will cover the
details of simulation (collision detection and response, path-finding, etc) in later sections.

Figure 5. Scene graph tree

3.5 Rendering pipeline
In most cases, there is only one scene graph tree in the engine. Please see Figure 6. To render a new
frame, the entire scene is advanced by a time delta. View-culling and sorted post-rendering is also
implemented in the rendering pipeline.

Figure 6. Scene rendering pipeline

3.6 Simulation pipeline
Simulation is the core of ParaEngine. As I have described in Section 2, the Simulation theory has four

Rendering the scene

Render ()

1. Setup Camera

2. Advance Scene ()

3. game interface rendering
(mostly 2D)

1. skybox render

2. others

3. Transverse Scene.

4. post rendering list
sorting and rendering

1. Basic View Culling Algorithm:
using Volume and object type

2. For each object Draw (sceneState)
[and/or] its children.

0. Make sceneState

1. Draw (sceneState)

Contains camera info, batched render
list and render state manager. Passed
as parameter in each Draw () call.

CTerrainTileRoot

Biped-list
E.G: PC,

OPC

Solid-list
E.G: global

CTerrainTile

Biped-list
E.G:

creatures

Solid-list
E.G: large
buildingCTerrainTile

Biped-list
E.G:

creatures

Solid-list
E.G: NPC,
meshes

Middle tiles

CSceneObject
Terrain tiles will

automatically grow
(subdivide) as the

scene graph expands.

Global scene objects are attached
to the root terrain tile.

Regional active scene objects can be attached
to any terrain tile in the quad-tree provided
they use absolute values for their positions.

The most versatile objects are in the leaf
nodes of terrain tiles, such as mesh objects,

static or reactive biped objects, etc. Original VRML
children tree

- page 8 of 11 -

parts: “dimensions of simulation”, “concurrent simulation”, “imagery-subconscious loop” and

xt, I will give some basic ideas on the fixed engine simulation. Please recall that all
imulations are completed in a 2.5D unbounded real coordinate system, which means that

“attention and short-term memory”. We will describe their implementations in the game engine one by
one. In the sense of “dimensions of simulation”, the rendering pipeline which depends on camera
(attention) adds extra “dimensions” to what has already been simulated. During normal simulation
where objects are not seen by a camera, the dimension of simulation is usually limited to object
position, size, orientation or perhaps a local frame number; whereas simulation within the camera’s
view has all the extra dimensions added to be rendered in real life form. “Concurrent simulation”
requires the simulation pipeline to cover more about the scene graph than the rendering pipeline
during each time slice, so that all active objects will be simulated whether they get the attention
(camera focus) or not. As I have described in section 3.2, not all game world logic are written in NPL.
Physically based simulation is done by fixed code in Para Engine, and high-level simulation is done
by distributed NN in script forms. Collision detection and response is one important simulation done
by fixed code. In addition, path-finding is also regarded as part of the simulation task performed by
the fixed engine code. Hence, in the “imagery-subconscious loop”, simulations in the “subconscious”
are implemented in two programming systems, fixed engine programming and flexible NPL
programming. These two systems communicate with each other through predefined triggers in the
scene graph. For example, a collision or key stroke upon a scene object might cause a message to be
routed to the input field of a neuron script file, and a state change of a neuron script file will cause new
configurations to an existing simulation or spawning new ones. Finally “attention” is the camera in the
game engine. Objects under “attention” will be simulated with more dimensions than others. The
game engine will also keep a short history of camera visited scene nodes. So when the scene graph
gets too large, the game engine can selectively release some of them from memory according to this
record. This is like in the human brain: imageries that receive more attentions have a better chance to
be remembered.

In the following te
s

{ , , | , , }p x y z x y z R∀ ∈ < > ∈ , p is a valid position in the game world and so it is with orientations.
Details of these algorithms can be found in the manual of ParaEngine [Web Link1].

3.6.1 Collision detection
First of all, the game engine only gen
region. Second, some active objec

erates collision pairs for active objects that are in the simulation
ts usually reside nearer to the scene root than they should be (see

le list, biped lists, and visiting biped list in each active tile
 Select bipeds ma ctive Biped List

to its vicinity biped list. If
list.

 scene, executing High Level Event and/or changing its
tive biped. Path-finding is implemented next; additional way

Section 3.4), hence we must test against all other active objects in the same tree level as well as the
deeper part of that tree node (which might not be transversed in rendering pipeline). An outline of the
algorithm is given in Table 1. (Note: Biped means a mobile object in the scene graph. Not everything
is explained in it.)

Table 1 Environment Simulator: Collision detection
Clear the global ti
Pass1: rked with OBJ_VOLUMN_PERCEPTIVE_RADIUS into the A
Pass 2: generate static collision pairs for each moving active bipeds.
“static collision pair” means that one object in the pair is static i.e. not marked with
OBJ_VOLUMN_PERCEPTIVE_RADIUS.
Pass 3: add any active biped that is in the perceptive radius of each active biped in

ther active bipeds, add them into its collision the biped is moving and is in collision with o
For each biped in each active terrain tile in the list
 Test with all other bipeds in the same tile.
end

thePass 4: Animate biped, i.e. move it around
e all collision pairs for each aclocations). Solv

points will be created for mobile objects if necessary.
Pass 5: Execute AI modules for each active biped.

1 http://www.lixizhi.net/projects.htm#paraengine

- page 9 of 11 -

Aft ist of bipeds that is active in the current frame,
ject that is also in the tile. This information is then

tion. Path-finding is
idual biped object. The input information that a biped has is the terrain tile

 COMMAND_POINT=0,
 a new facing.

OINT.

t have
in blocked mode.

;

er implementing the above algorithm, we have a l
the
p

tile that contains it and any other biped ob
assed to the AI module of each active biped as its input perceptions. AI module means extensible

(high level) simulation tasks which are also available in the fixed engine code.

3.6.2 Path-finding
Path-finding will use the intermediate result generated during collision detec
implemented by each indiv
that it belongs to and the distance to all other bipeds and obstacles in its perceptive radius. This
information is generated by the environment simulator in an earlier stage. Please see pass 4 of Table
1.The job of path-finding is to generate additional waypoints to the destination. There are several
kinds of waypoints that a path-finding biped could generate as a result. See Table 2.

Table 2 Waypoint type
enum WayPointType {
 /// the player must arrive at this point, before proceeding to the next waypoint

 /// the player is turning to
 COMMAND_FACING,

y itself generate some path-finding points in /// when player is blocked, it ma
 /// order to reach the next COMMAND_P
 PATHFINDING_POINT,
 /// The player is blocked, and needs to wait fTimeLeft in order to proceed.

yer in blocked state, does no /// it may continue to be blocked, or walk along. Pla
er static actions while /// a speed, so it can perform oth

 BLOCKED
}

The waypoint generation rule is given in Table 3.

Table 3 Path-finding rule
ule1: we will not prevent any collision; instead, path-finding is used only when there are already collisions between

rule2: if there have been collisions, we w given solutions in previous path-finding

r
this biped and the environment by using the shortest path.

ill see whether we have already
processes. If so, we will not generate new ones.
rule 3: we will only generate a solution when the next way point is a command type point. The following steps are used
to generate waypoints in path-finding solutions.
Step1: If the biped has already reached a waypoint, then remove it and go on to the next one in the queue. When
waypoint itself is in collision with other static objects, the space occupied by these static objects will be used as the
destination point; whereas in collision free waypoint, a destination is just a point in real coordinate system.
Step2: Check if there are other moving bipeds in its collision list. If so, block the current biped for some seconds or if
the destination point collides with any of them, remove the way point.
Step3: Get the biggest non-mobile object in the collision list. We can give a precise solution. according to its shape,
when there is only one object. Any solution should guarantee that the biped is approaching the destination point, so that
a group of solutions are guaranteed to reach their goals within limited time.

The core of the algorithm is this: when several objects already collide into each other, only one object
is picked to implement path-finding, while the others are put into a blocked state. This moving object

ill then pick out the biggest object that is currently in collision with it and try to side-step it by

 introduced the prospect of distributed Internet games, reviewed the simulation-theory
 view, and discussed a game engine framework based on them. The idea
 that our brain is both a distributed computing environment and a theatre of

w
generating additional waypoints between its current location and the old destination. This is a fast
path-finding algorithm in unbounded real-coordinate system, and is compromised between efficiency
and accuracy.

4 Conclusions
In this paper, we
from a computer point of
came from the observation
multimedia (internal perceptions). The analogy of human cognition to simulation system has been

- page 10 of 11 -

applied to a computer game engine to construct distributed Internet games. Bringing networked virtual
game worlds [2] and game world logic to the open Internet will spawn new types of computer games.
We hope this article and [1], which complements each other in describing the ParaEngine and Neural
Parallel Language, will provide a new prospective to game development as well as general type
distributed applications.

Reference:
[1] Xizhi Li, “Using Neural Parallel Language in Distributed Game World Composing,” in Conf. Proc. IEEE

Distributed Framework of Multimedia Applications. 2005 (to be published).
., and Zyda, M. (1999). Networked Virtual Environments: Design and Implementation, ACM Press.

ciences,
[2] Singhal, S
[3] Hesslow, G. (2002) “Conscious thought as simulation of behaviour and perception.” Trends in Cognitive S

6:242-247
[4] Web3D Consortium. http://www.web3d.org/
[5] Murray Shanahan. The Imaginative Mind A Precis. Conference on Grand Challenges for Computing Research

(gcconf 2004)
[6] R. Ierusalimschy, L. H. de Figueiredo, W. Celes. Lua-an extensible extension language. Software: Practice &

[9] earning and Simulation. (unpublished,

Experience 26 #6 (1996) 635-652.
[7] Adrian David Cheok, Siew Wan Fong, Kok Hwee Goh, Xubo Yang, Wei Liu, Farzam Farzbiz, and Yu Li. Human

Pacman: A Mobile Entertainment System with Ubiquitous Computing and Tangible Interaction over a Wide
Outdoor Area. Mobile HCI 2003, LNCS 2795, pp. 209–224, 2003.

[8] Daniel Sánchez-Crespo Dalmau, Core Techniques and Algorithms in Game Programming, New Riders
Publishing, ISBN : 0-1310-2009-9, 2003-9
Xizhi Li. Synthesizing Real-time Human Animation by L
for review only. Please download full paper from http://www.lixizhi.net/publications.htm)

- page 11 of 11 -

	Introduction
	Review of the Simulation-Theory
	ParaEngine Framework
	Overview of ParaEngine
	Game world logic
	Timing and engine modules
	Scene object and asset entity
	Rendering pipeline
	Simulation pipeline
	Collision detection
	Path-finding

	Conclusions

